skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Teague, Harris"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The prosperity of Internet of Things (IoT) calls for efficient ways of designing extremely compact yet accu- rate DNN models. Both the cell-based neural architec- ture search methods and the recently proposed graph based methods fall short in finding high quality IoT models due to the search flexibility, accuracy density, and node depen- dency limitations. In this paper, we propose a new graph- based neural architecture search methodology MSNAS for crafting highly compact yet accurate models for IoT de- vices. MSNAS supports flexible search space and can ac- cumulate learned knowledge in a meta-graph to increase accuracy density. By adopting structural wiring architec- ture, MSNAS reduces the dependency between nodes, which allows more compact models without sacrificing accuracy. The preliminary experimental results on IoT applications demonstrate that the MSNet crafted by MSNAS outperforms MobileNetV2 and MnasNet by 3.0% in accuracy, with 20% less peak memory consumption and similar Multi-Adds. 
    more » « less